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Abstract - A modified Yee’s Cell is proposed for the 
finite-difference time-domain (FDTD) modeling of the 
waveguide structure with the longitudinally periodic 
boundary condition. For the presented FDTD scheme 
based on the Floquet’s theorem, an arrow representing 
a complex field component in the original Yee’s cell is 
divided into two real-arrow and imaginary-arrow 
separated by a half of the longitudinal spatial-increment, 

2z∆ . By the proposed mesh scheme and the 
periodicity of the computational domain, the handling 
of the complex field function and the periodic boundary 
condition is streamlined, resulting in the reduction of 
the computation time and memory. To verify the 
proposed scheme, the dispersion diagram of a 
corrugated parallel-plate waveguide is obtained and 
compared with the transmission line analysis. Also, the 
numerical stability condition and the numerical 
dispersion relation are given. 
 

I. INTRODUCTION 
Guided wave propagation through the periodic 

guiding structure (PGS) has been a subject of interest 
for a long time due to its slow-wave and stop-band 
characteristic. The application of the PGS covers the 
integrated optics area, including distributed feedback 
lasers, distributed Bragg reflection lasers, and 
quasiphase-matched second-harmonic generation, 
and microwave’s area, including traveling-wave tube, 
filter, and delay line.[1][2] So far, based on the 
Floquet’s theorem[2], the PGS has been mostly 
analyzed using mode-matching technique, method of 
moment, finite element method, transmission line 
matrix method, and finite-difference time-domain 
(FDTD) method.[3-8] Among these analysis methods, 
FDTD method is a strong candidate for the numerical 
analysis of anisotropic, inhomogeneous, and 
irregular-formed PGS.[6][7] Particularly, the recent 
introduction of photonic-bandgap (PBG) material 
technology[9] requires accurate and efficient analysis 
methods of arbitrary-shaped PGS. 

Several attempts based on the Floquet’s 
theorem, have been published related to the FDTD 
modeling of the PGS, where the periodic boundary 
condition (PBC) is imposed into the FDTD algorithm 
for the longitudinally periodic waveguide structure. 
Cangellaris et al introduced a hybrid spectral/FDTD 
method.[6] By the periodicity of the computational 

domain, their scheme computes the longitudinal-
spatial-derivative spectrally using the discrete Fourier 
series representation, which satisfies the PBC and 
higher-order derivative at once. On the other hand, 
Celuch-Marcysiak and Gwarek suggested a spatially 
looped algorithm using the basic central-difference 
scheme for the FDTD modeling of the PGS.[7] To 
implement the PBC in their algorithm, the looping 
operator is adopted. 

For the PGS analysis, we present a new FDTD 
scheme for the calculation of the periodic function in 
the same computational domain as [6]. In the 
presented FDTD algorithm, the PBC is directly 
implemented without any looping operator like [7]. 
However, the longitudinal spatial derivative using the 
fast Fourier transform (FFT) used in [6] requires 
additional time and memory resource compared to 
the basic central-difference scheme of the standard 
FDTD method. Therefore, in this paper, we propose a 
newly modified Yee’s cell, by which the derivatives 
with respect to all of the temporal and spatial 
variables are approximated using the central-
differences. Therefore, this paper with [6] makes it 
possible the trade-off between the numerical accuracy 
and the computational resources in the FDTD 
simulation for the periodic wave in the PGS. To our 
knowledge, since there has been not clearly explain 
about the physical meaning of the time-domain 
complex function used in FDTD simulation such as 
[6], the next section will open this issue by the time-
domain representation of the wave function in the 
PGS. 

 
II. FDTD SCHEME USING MODIFIED YEE’S CELL 

While the Floquet’s theorem is usually presented 
in frequency(ω)-domain, it can be used in time-
domain to determine the propagation characteristic of 
a longitudinally periodic structure. When a wave is 
guided by an arbitrary waveguide structure periodic 
in z-direction with period d, the time-domain 
representation of the wave propagating with a 
propagation constant β parallel to z-axis is given by 
both positive-going and negative-going waves, as 
shown in Eq.(1). In general, it includes both cosine 
and sine harmonics.  
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(1) 
 
 
 
(1) is the time-domain representation of the wave 
guided by the PGS based on the Floquet’s theorem, 
where the wave function is represented by the real 
part of the complex function ( ) zjetzyxf β,,, . 
According to the Brillouin diagram for an arbitrary 
PGS[2], the wave function propagating with a 
propagation constant β is the superposition of the 
waves with discrete multiple frequencies. In (1), the 
superscript and the subscript of the coefficients ( +

l
aω , 

+
l

bω , −
l

aω  and −
l

bω ) denote the propagation direction 
and the corresponding frequency, respectively. Since 
these coefficients are varying with (x,y,z) and 
specified for each frequencies, these are 
longitudinally periodic with period L from the 
Floquet’s theorem. Their periodicity gives (2) for 
( )tzyxf ,,, , whose real part and imaginary part are 

given in (3). 
 
    (2) 
 
  

(3a) 
 
  
     

(3b) 
 
  
     
 

(3c) 
 
When solving Maxwell’s equation for the wave given 
by (1), the unknowns are the frequencies ( lω ), the 
number (N) of those frequencies, and the coefficients 
of the positive-going and negative-going waves. 
Consequently, for the convenience in the numerical 
computation, all of the unknowns can be obtained by 
solving the complex function, ( )tzyxf ,,, , defined in 
β-domain. Moreover, (3) tells the relation of 
( )tzyxf ,,,  to the positive-going wave and the 

negative-going wave, by which the β-domain 
calculation of the periodic field in the PGS is 
physically meaningful. 

To perform the FDTD simulation in the β-
domain, the longitudinal spatial-derivative z∂∂  
should be replaced by βjz +∂∂ . If the original 
Yee’s cell[10] is employed when constructing the 
finite-difference equations in β-domain, the positions 
of the field variables for the βj  operation are not 
assigned. To avoid the extra computation for these 
unassigned fields, the real-part and the imaginary-
part of each field component should be properly 
located in the spatial mesh. For the efficient 
implementation of the central-difference leapfrog 
scheme, we modify Yee’s cell in the following way; 
the real-part and imaginary-part of each field 
component are located separately, by a half of the 
longitudinal spatial-increment, 2z∆ , as graphically 
described in Fig. 1. While six arrows in a unit spatial 
mesh represents six field components in the standard 
FDTD, an arrow in the original Yee’s cell[10] is 
divided into two real-arrow and imaginary-arrow in 
the modified Yee’s cell scheme. Then, the positions 
for the βj  operation are assigned spatially. By 
using the modified Yee’s cell, the presented FDTD 
algorithm for the complex time-domain periodic 
function is streamlined to implement the central-
difference approximation, also resulting in the 
reduction of the computation time and memory. 

The presented FDTD method calculates the 
electric field ( )tzyxE ,,,  and the magnetic field 
( )tzyxH ,,,  represented by the same way as (1) and 

(3) just in a single period ( dz <≤0 ) with the PBC 
given in (2). The Maxwell’s curl equation is 
presented in (4). 
 
  

 
 
 
    (4a) 
 
 

 
 
 

 
   (4b) 

 
All of the field variables in (4), where (x,y,z,t) 

dependence is omitted for simplicity, are periodic. 
Using this proposed spatial mesh scheme, the update 
equations are streamlined in (5), for the real-part of 
Ex component. 
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    (5) 
 
In (5), ∆x, ∆y, and ∆z are the spatial mesh sizes and 
∆t is the time step. ( )

r
nkjixE ,,,  represents the real-part 

of Ex(i∆x,j∆y,k∆z,n∆t). The update equations for the 
remained 11 components can be derived in the same 
manner. In the presented FDTD method, the PBC is 
directly implemented by (2). 

Since the original Yee’s cell is modified, the 
usual Courant stability criterion and the numerical 
grid dispersion relation must be modified. The 
presented FDTD algorithm for the PGS is completed 
by (6) and (7) with the modified Yee’s cell and the 
simple PBC. (6) and (7) are the numerical stability 
criterion and the numerical dispersion relation for the 
presented FDTD scheme, respectively.  

 
  
  
 (6) 

In (6), 0c  is the maximum speed of light in the 
computational domain. 
 
 
 
 
 
 
 
 
 
 

(7) 
(7) is derived assuming the plane monochromatic 
traveling-wave trial solution with wave number 
vector ( )zyx kkk ~,~,~  and frequency ω .  
 

III. NUMERICAL RESULT 
To demonstrate the validity of the modified Yee’s 

cell, a periodically corrugated parallel-plate 
waveguide, as shown in Fig. 2, is analyzed. The ω-β 
dispersion relation of a TM mode are computed and 
compared to that obtained by the transmission line 

analysis [2]. The dispersion equation given by the 
simple transmission line analysis is known quite 
accurate as long as s is much smaller than d and 
wavelength. In the FDTD simulation, the spatial 
mesh size was taken as ∆x = ∆z = 0.5 mm. From the 
numerical stability criterion (6), the time step was 
chosen to be 1ps. Each simulation is executed with 
the predetermined propagation constant (β). The peak 
frequencies of the modes for the β used in each 
FDTD run is obtained by the FFT of the calculated 
transient waveform, as predicted by (1). The FDTD 
simulation and the followed FFT for each β give the 
dispersion diagram, which is shown in Fig.3. The 
continuous curve is calculated by the transmission 
line analysis[2] and the circles are obtained by the 
presented FDTD scheme with the modified Yee’s cell. 
By observing that the two dispersion diagrams are 
quite well matched, it can be said that the validity of 
the suggested Yee’s cell is demonstrated. 

 
IV. CONCLUSION 

In this paper, the modification of the original 
Yee’s cell is presented for the FDTD modeling of the 
PGS. Using the modified Yee’s cell, the efficient 
handling of the complex field function is enabled in 
the implementation of the FDTD code with the 
central-difference scheme. In other words, the 
presented Yee’s cell saves the computing time and the 
memory resource by the proper allocations of the real 
and the imaginary parts of each field components. 
The validity of the modified Yee’s cell is also 
successfully demonstrated. For the presented scheme, 
the numerical stability condition and the numerical 
dispersion relation are also given. Although the 
proposed scheme is demonstrated by the 2-
dimensional PGS analysis, the applications to the 3-
dimensional PGS are straightforward.  
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Fig.1 Proposed modified
Yee’s cell for the FDTD
modeling of the PGS. To
avoid the confusion of
the location of each field
component in this mesh,
the real parts and the
imaginary parts are
separately described.
Although the real mesh
and the imaginary mesh
are separately given, they
are computed
simultaneously, as shown
in (5). 

Fig.2 Periodically corrugated parallel-plate
waveguide (period d) to compare the
proposed FDTD simulation with the
transmission line analysis[2]. 

Fig.3 The first branch of ω−β dispersion
diagram of the corrugated parallel plate
waveguide shown in Fig.2. The solid line
represents the calculation based on the
transmission line analysis[2] and the circles
represent the calculation by the proposed
FDTD simulation using the modified Yee’s
cell. As can be seen from the graph, the two
calculation results agree pretty well,
demonstrating the validity of the proposed
FDTD simulation for the PGS modeling. 
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