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Abstract - A modified Yee’s Cell is proposed for the
finite-difference time-domain (FDTD) modeling of the
waveguide structure with the longitudinally periodic
boundary condition. For the presented FDTD scheme
based on the Flogquet’s theorem, an arrow representing
a complex field component in the original Yee’s cell is
divided into two real-arrow and imaginary-arrow
separated by a half of the longitudinal spatial-increment,
Az/2 . By the proposed mesh scheme and the

periodicity of the computational domain, the handling
of the complex field function and the periodic boundary
condition is streamlined, resulting in the reduction of
the computation time and memory. To verify the
proposed scheme, the dispersion diagram of a
corrugated parallel-plate waveguide is obtained and
compared with the transmission line analysis. Also, the
numerical stability condition and the numerical
dispersion relation are given.

|. INTRODUCTION

Guided wave propagation through the periodic
guiding structure (PGS) has been a subject of interest
for a long time due to its slow-wave and stop-band
characteristic. The application of the PGS covers the
integrated optics area, including distributed feedback
lasers, distributed Bragg reflection lasers, and
quasiphase-matched second-harmonic generation,
and microwave’s area, including traveling-wave tube,
filter, and delay line.[1][2] So far, based on the
Floquet’s theorem[2], the PGS has been mostly
analyzed using mode-matching technique, method of
moment, finite element method, transmission line
matrix method, and finite-difference time-domain
(FDTD) method.[3-8] Among these analysis methods,
FDTD method is a strong candidate for the numerical
analysis of anisotropic, inhomogeneous, and
irregular-formed PGS.[6][7] Particularly, the recent
introduction of photonic-bandgap (PBG) material
technology[9] requires accurate and efficient analysis
methods of arbitrary-shaped PGS.

Several attempts based on the Floquet’s
theorem, have been published related to the FDTD
modeling of the PGS, where the periodic boundary
condition (PBC) is imposed into the FDTD algorithm
for the longitudinally periodic waveguide structure.
Cangellaris et al introduced a hybrid spectral/FDTD
method.[6] By the periodicity of the computational

domain, their scheme computes the longitudinal-
spatial-derivative spectrally using the discrete Fourier
series representation, which satisfies the PBC and
higher-order derivative at once. On the other hand,
Celuch-Marcysiak and Gwarek suggested a spatially
looped algorithm using the basic central-difference
scheme for the FDTD modeling of the PGS.[7] To
implement the PBC in their algorithm, the looping
operator is adopted.

For the PGS analysis, we present a new FDTD
scheme for the calculation of the periodic function in
the same computational domain as [6]. In the
presented FDTD algorithm, the PBC is directly
implemented without any looping operator like [7].
However, the longitudinal spatial derivative using the
fast Fourier transform (FFT) used in [6] requires
additional time and memory resource compared to
the basic central-difference scheme of the standard
FDTD method. Therefore, in this paper, we propose a
newly modified Yee’s cell, by which the derivatives
with respect to all of the temporal and spatial
variables are approximated using the central-
differences. Therefore, this paper with [6] makes it
possible the trade-off between the numerical accuracy
and the computational resources in the FDTD
simulation for the periodic wave in the PGS. To our
knowledge, since there has been not clearly explain
about the physical meaning of the time-domain
complex function used in FDTD simulation such as
[6], the next section will open this issue by the time-
domain representation of the wave function in the
PGS.

I1. FDTD SCHEME USING MODIFIED YEE’S CELL

While the Floquet’s theorem is usually presented
in frequency(w)-domain, it can be used in time-
domain to determine the propagation characteristic of
a longitudinally periodic structure. When a wave is
guided by an arbitrary waveguide structure periodic
in z-direction with period d, the time-domain
representation of the wave propagating with a
propagation constant (3 parallel to z-axis is given by
both positive-going and negative-going waves, as
shown in Eq.(1). In general, it includes both cosine
and sine harmonics.
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(1) is the time-domain representation of the wave
guided by the PGS based on the Floquet’s theorem,
where the wave function is represented by the real
part of the complex function f(x,y,zte" .
According to the Brillouin diagram for an arbitrary
PGS[2], the wave function propagating with a
propagation constant B is the superposition of the
waves with discrete multiple frequencies. In (1), the
superscript and the subscript of the coefficients (aM :
by a and b,, ) denote the propagation direction
and the correspondmg frequency, respectively. Since
these coefficients are varying with (Xx,y,z) and
specified for each frequencies, these are
longitudinally periodic with period L from the
Floquet’s theorem. Their periodicity gives (2) for
f(x,y,zt), whose real part and imaginary part are
givenin (3).

f(x,y,z+d,t)=f(xy,2t) 2)

f(x,y,2,t)= £ (x,y,2,t)+ jf (x,y,z,t)
(32)
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When solving Maxwell’s equation for the wave given
by (1), the unknowns are the frequencies (), the
number (N) of those frequencies, and the coefficients
of the positive-going and negative-going waves.
Consequently, for the convenience in the numerical
computation, all of the unknowns can be obtained by
solving the complex function, f(x,y,z,t), defined in
B-domain. Moreover, (3) tells the relation of
f(x,y,z,t) to the positive-going wave and the

negative-going wave, by which the p-domain
calculation of the periodic field in the PGS is
physically meaningful.

To perform the FDTD simulation in the B-
domain, the longitudinal spatial-derivative 9/dz
should be replaced by d/0z+ jB. If the original
Yee’s cell[10] is employed when constructing the
finite-difference equations in 3-domain, the positions
of the field variables for the jg operation are not
assigned. To avoid the extra computation for these
unassigned fields, the real-part and the imaginary-
part of each field component should be properly
located in the spatial mesh. For the efficient
implementation of the central-difference leapfrog
scheme, we modify Yee’s cell in the following way;
the real-part and imaginary-part of each field
component are located separately, by a half of the
longitudinal spatial-increment, Az/2, as graphically
described in Fig. 1. While six arrows in a unit spatial
mesh represents six field components in the standard
FDTD, an arrow in the original Yee’s cell[10] is
divided into two real-arrow and imaginary-arrow in
the modified Yee’s cell scheme. Then, the positions
for the jB operation are assigned spatially. By
using the modified Yee’s cell, the presented FDTD
algorithm for the complex time-domain periodic
function is streamlined to implement the central-
difference approximation, also resulting in the
reduction of the computation time and memory.

The presented FDTD method calculates the
electric field E(x,y,zt) and the magnetic field
H(x,y,z,t) represented by the same way as (1) and
(3) just in a single period (0<z<d) with the PBC
given in (2). The Maxwell’s curl equation is
presented in (4).
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All of the field variables in (4), where (x,y,z,t)
dependence is omitted for simplicity, are periodic.
Using this proposed spatial mesh scheme, the update
equations are streamlined in (5), for the real-part of
E, component.
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In (5), AX, Ay, and Az are the spatial mesh sizes and
At is the time step. EI «n) Fepresents the real-part
of E,(iAX,jAy,kAz, nAt) The update equations for the
remained 11 components can be derived in the same
manner. In the presented FDTD method, the PBC is
directly implemented by (2).

Since the original Yee’s cell is modified, the
usual Courant stability criterion and the numerical
grid dispersion relation must be modified. The
presented FDTD algorithm for the PGS is completed
by (6) and (7) with the modified Yee’s cell and the
simple PBC. (6) and (7) are the numerical stability
criterion and the numerical dispersion relation for the
presented FDTD scheme, respectively.
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In (6), ¢, is the maximum speed of light in the
computational domain.
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(7) is derived assuming the plane monochromatic
traveling-wave trial solution with wave number
vector ?EX,EV,EZ) and frequency w.

I11. NUMERICAL RESULT
To demonstrate the validity of the modified Yee’s
cell, a periodically corrugated parallel-plate
waveguide, as shown in Fig. 2, is analyzed. The w3
dispersion relation of a TM mode are computed and
compared to that obtained by the transmission line

analysis [2]. The dispersion equation given by the
simple transmission line analysis is known quite
accurate as long as s is much smaller than d and
wavelength. In the FDTD simulation, the spatial
mesh size was taken as Ax = Az = 0.5 mm. From the
numerical stability criterion (6), the time step was
chosen to be 1ps. Each simulation is executed with
the predetermined propagation constant (). The peak
frequencies of the modes for the B used in each
FDTD run is obtained by the FFT of the calculated
transient waveform, as predicted by (1). The FDTD
simulation and the followed FFT for each B give the
dispersion diagram, which is shown in Fig.3. The
continuous curve is calculated by the transmission
line analysis[2] and the circles are obtained by the
presented FDTD scheme with the modified Yee’s cell.
By observing that the two dispersion diagrams are
quite well matched, it can be said that the validity of
the suggested Yee’s cell is demonstrated.

IV. CONCLUSION

In this paper, the modification of the original
Yee’s cell is presented for the FDTD modeling of the
PGS. Using the modified Yee’s cell, the efficient
handling of the complex field function is enabled in
the implementation of the FDTD code with the
central-difference scheme. In other words, the
presented Yee’s cell saves the computing time and the
memory resource by the proper allocations of the real
and the imaginary parts of each field components.
The validity of the modified Yee’s cell is also
successfully demonstrated. For the presented scheme,
the numerical stability condition and the numerical
dispersion relation are also given. Although the
proposed scheme is demonstrated by the 2-
dimensional PGS analysis, the applications to the 3-
dimensional PGS are straightforward.
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Fig.1 Proposed modified
Yee’s cell for the FDTD
modeling of the PGS. To
avoid the confusion of
the location of each field
component in this mesh,
the real parts and the
imaginary  parts  are
separately described.
Although the real mesh
and the imaginary mesh
are separately given, they
are computed
simultaneously, as shown
in (5).
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Fig.2 Periodically corrugated parallel-plate
waveguide (period d) to compare the
proposed FDTD simulation with the
transmission line analysis[2].

Fig.3 The first branch of w-[ dispersion
diagram of the corrugated parallel plate
waveguide shown in Fig.2. The solid line
represents the calculation based on the
transmission line analysis[2] and the circles
represent the calculation by the proposed
FDTD simulation using the modified Yee’s
cell. As can be seen from the graph, the two
calculation results agree pretty well,
demonstrating the validity of the proposed
FDTD simulation for the PGS modeling.
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